Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
J Air Waste Manag Assoc ; 74(5): 335-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407923

RESUMO

Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.


Assuntos
Clonagem Molecular , Resíduos Industriais , Nitrorredutases , Indústria Têxtil , Nitrorredutases/genética , Nitrorredutases/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Mononucleotídeo de Flavina/metabolismo , Compostos Azo/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Corantes/metabolismo , Metagenômica/métodos
2.
mSystems ; 9(1): e0097223, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38078757

RESUMO

Nitrofurantoin is a commonly used chemotherapeutic agent in the treatment of uncomplicated urinary tract infections caused by the problematic multidrug resistant Gram-negative pathogen Klebsiella pneumoniae. The present study aims to elucidate the mechanism of nitrofurantoin action and high-level resistance in K. pneumoniae using whole-genome sequencing (WGS), qPCR analysis, mutation structural modeling and untargeted metabolomic analysis. WGS profiling of evolved highly resistant mutants (nitrofurantoin minimum inhibitory concentrations > 256 mg/L) revealed modified expression of several genes related to membrane transport (porin ompK36 and efflux pump regulator oqxR) and nitroreductase activity (ribC and nfsB, involved in nitrofurantoin reduction). Untargeted metabolomics analysis of total metabolites extracted at 1 and 4 h post-nitrofurantoin treatment revealed that exposure to the drug caused a delayed effect on the metabolome which was most pronounced after 4 h. Pathway enrichment analysis illustrated that several complex interrelated metabolic pathways related to nitrofurantoin bacterial killing (aminoacyl-tRNA biosynthesis, purine metabolism, central carbohydrate metabolism, and pantothenate and CoA biosynthesis) and the development of nitrofurantoin resistance (riboflavin metabolism) were significantly perturbed. This study highlights for the first time the key role of efflux pump regulator oqxR in nitrofurantoin resistance and reveals global metabolome perturbations in response to nitrofurantoin, in K. pneumoniae.IMPORTANCEA quest for novel antibiotics and revitalizing older ones (such as nitrofurantoin) for treatment of difficult-to-treat Gram-negative bacterial infections has become increasingly popular. The precise antibacterial activity of nitrofurantoin is still not fully understood. Furthermore, although the prevalence of nitrofurantoin resistance remains low currently, the drug's fast-growing consumption worldwide highlights the need to comprehend the emerging resistance mechanisms. Here, we used multidisciplinary techniques to discern the exact mechanism of nitrofurantoin action and high-level resistance in Klebsiella pneumoniae, a common cause of urinary tract infections for which nitrofurantoin is the recommended treatment. We found that the expression of multiple genes related to membrane transport (including active efflux and passive diffusion of drug molecules) and nitroreductase activity was modified in nitrofurantoin-resistant strains, including oqxR, the transcriptional regulator of the oqxAB efflux pump. Furthermore, complex interconnected metabolic pathways that potentially govern the nitrofurantoin-killing mechanisms (e.g., aminoacyl-tRNA biosynthesis) and nitrofurantoin resistance (riboflavin metabolism) were significantly inhibited following nitrofurantoin treatment. Our study could help inform the improvement of nitrofuran derivatives, the development of new pharmacophores, or drug combinations to support the resurgence of nitrofurantoin in the management of multidrug resistant K. pneumouniae infection.


Assuntos
Infecções por Klebsiella , Infecções Urinárias , Humanos , Nitrofurantoína/farmacologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/metabolismo , Infecções Urinárias/tratamento farmacológico , Genômica , Nitrorredutases/genética , Riboflavina/metabolismo , RNA de Transferência/metabolismo
3.
Cell Chem Biol ; 30(12): 1680-1691.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37898120

RESUMO

Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.


Assuntos
Metronidazol , Peixe-Zebra , Animais , Metronidazol/farmacologia , Metronidazol/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Metagenoma , Clonagem Molecular , Nitrorredutases/genética
4.
Appl Microbiol Biotechnol ; 107(16): 5269-5279, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395748

RESUMO

Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 µM (fomesafen), 23.64 µM (bifenox), 26.19 µM (fluoroglycofen), 28.24 µM (acifluorfen), and 36.32 µM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.


Assuntos
Bacillus , Herbicidas , Bacillus/genética , Bacillus/metabolismo , Herbicidas/metabolismo , Simulação de Acoplamento Molecular , Éteres Difenil Halogenados , Biotransformação , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36682328

RESUMO

The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.


Assuntos
Antiprotozoários , Giardia lamblia , Metronidazol/farmacologia , Antiprotozoários/farmacologia , Ferredoxinas/genética , Ferredoxinas/metabolismo , Piruvato Sintase/genética , Piruvato Sintase/metabolismo , Giardia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Variação Genética
6.
J Biomol Struct Dyn ; 41(10): 4421-4443, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35574601

RESUMO

In the past decade, TB drugs belonging to the nitroimidazole class, pretomanid and delamanid, have been authorised to treat MDR-TB and XDR-TB. With a novel inhibition mechanism and a reduction in the span of treatment, it is now being administered in various combinations. This approach is not the ultimate remedy since the target protein Deazaflavin dependent nitroreductase (Ddn) has a high mutation frequency, and already pretomanid resistant clinical isolates are reported in various studies. Ddn is essential for M.tuberculosis to emerge from hypoxia, and point mutations in critical residues confer resistance to Nitro-imidazoles. Among the pool of available mutants, we have selected seven mutants viz DdnL49P, DdnY65S, DdnS78Y, DdnK79Q, DdnW88R, DdnY133C, and DdnY136S, all of which exhibited resistance to pretomanid. To address this issue, through computational study primarily by MD simulation, we attempted to elucidate these point mutations' impact and investigate the resistance mechanism. Hence, the DdnWT and mutant (MT) complexes were subjected to all-atom molecular dynamics (MD) simulations for 100 ns. Interestingly, we observed the escalation of the distance between cofactor and ligand in some mutants, along with a significant change in ligand conformation relative to the DdnWT. Moreover, we confirmed that mutations rendered ligand instability and were ejected from the binding pocket as a result. In conclusion, the results obtained provide a new structural insight and vital clues for designing novel inhibitors to combat nitroimidazole resistanceCommunicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Simulação de Dinâmica Molecular , Ligantes , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Nitroimidazóis/metabolismo , Mycobacterium tuberculosis/genética , Mutação , Nitrorredutases/genética , Nitrorredutases/química , Nitrorredutases/metabolismo , Antituberculosos/farmacologia
7.
Mol Biotechnol ; 65(4): 556-569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36042106

RESUMO

Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.


Assuntos
Leishmania , Leishmania/genética , Leishmania/metabolismo , NADP/metabolismo , Escherichia coli/metabolismo , Nitrorredutases/genética , Nitrorredutases/química , Cinética
8.
Environ Pollut ; 314: 120292, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181935

RESUMO

4-nitrobenzaldehyde (4-NBA) is a widely used chemical intermediate for industrial application and an important photodegradation product of chloramphenicol. This compound represents a substantial threat to human health and ecosystem due to its genotoxic and mutagenic effect. In this study, the 4-NBA detoxification by transgenic rice overexpressing a bacterial nitroreductase gene, ElNFS1, from Enterobacter ludwigii were investigated. The cytosol-targeted ElNFS1 transgenic plants were selected to comprehensively examine their physio-biochemical responses and phytoremediation potential to 4-NBA. Our results showed that the transgenic plants exhibited strong tolerance to 4-NBA. Overexpression of ElNFS1 could significantly alleviate 4-NBA-induced damages of photosynthetic apparatus and reactive oxygen species overproduction in transgenic plants. The phytoremediation assay revealed that transgenic plants could remove more 4-NBA from the medium than wild-type plants. HPLC and LC-MS assays showed that 4-aminobenzaldehyde was found in the reductive products of 4-NBA. Altogether, the function of ElNFS1 during 4-NBA detoxification was characterized for the first time, which provides a strong theoretical support for the application potential of ElNFS1 transgenic plants on the phytoremediation of 4-NBA.


Assuntos
Oryza , Biodegradação Ambiental , Cloranfenicol , Ecossistema , Nitrorredutases/genética , Nitrorredutases/metabolismo , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Zebrafish ; 19(3): 109-113, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35617702

RESUMO

Zebrafish lines expressing nitroreductase (NTR) in specific cell compartments, which sensitizes those cells to metronidazole (MTZ)-mediated ablation, have proven extremely useful for studying tissue regeneration and investigating cell function. In contrast to many cells, neutrophils are comparatively resistant to the NTR/MTZ targeted ablation strategy. Recently, a rationally engineered variant of NTR (NTR 2.0) has been described that exhibits greatly improved MTZ-mediated ablation efficacy in zebrafish. We show that a transgenic line with neutrophil-restricted expression of NTR 2.0 demonstrates complete neutrophil ablation, with an MTZ dose 100-fold less than current treatment regimens, and with treatment durations as short as 5 h.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Metronidazol/farmacologia , Neutrófilos/metabolismo , Nitrorredutases/genética , Nitrorredutases/metabolismo , Peixe-Zebra/fisiologia
10.
J Hazard Mater ; 433: 128779, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364534

RESUMO

Nitroaromatic compounds, as the important chemical feedstock, have caused widespread environmental contaminations, and exhibited high toxicity and mutagenic activity to nearly all living organisms. The clean-up of nitroaromatic-contaminated soil and water has long been a major international concern. Here, we uncovered the role of a novel nitroreductase family gene, streptolysin S (SLS)-associated gene B (SagB), in enhancing nitroaromatic tolerance and detoxification of plants, and its potential application in phytoremediation of nitroaromatic contaminations. The expression of both the Arabidopsis and rice SagB genes is significantly induced by multiple hazardous nitroaromatic substances, including explosive pollutant 2,4,6-trinitrotoluene (TNT), natural compound 1-nitropyrene (1-NP) and herbicide pendimethalin (Pen). In vitro and in vivo evidences revealed that plant SagBs possess activities in degradation of these nitroaromatic substances. Arabidopsis and rice transgenic assays suggested that plant SagB genes increase tolerance and detoxification of nitroaromatic through facilitating its transformation to the amino derivative. More importantly, overexpression of plant SagBs increase their ability in TNT uptake, and remove more TNT from the growth culture. Our findings shed novel insights into a plant endogenous nitroreductase-mediated nitroaromatic tolerance and detoxification, and provide a new gene target for phytoremediation of nitroaromatic-contaminated environments.


Assuntos
Arabidopsis , Poluentes do Solo , Trinitrotolueno , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias , Biodegradação Ambiental , Nitrorredutases/genética , Nitrorredutases/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Estreptolisinas , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade
11.
J Vis Exp ; (181)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35311832

RESUMO

The retinal pigment epithelium (RPE) resides at the back of the eye and performs functions essential for maintaining the health and integrity of adjacent retinal and vascular tissues. At present, the limited reparative capacity of mammalian RPE, which is restricted to small injuries, has hindered progress to understanding in vivo RPE regenerative processes. Here, a detailed methodology is provided to facilitate the study of in vivo RPE repair utilizing the zebrafish, a vertebrate model capable of robust tissue regeneration. This protocol describes a transgenic nitroreductase/metronidazole (NTR/MTZ)-mediated injury paradigm (rpe65a:nfsB-eGFP), which results in ablation of the central two-thirds of the RPE after 24 h treatment with MTZ, with subsequent tissue recovery. Focus is placed on RPE ablations in larval zebrafish and methods for testing the effects of pharmacological compounds on RPE regeneration are also outlined. Generation and validation of RpEGEN, a MATLAB script created to automate quantification of RPE regeneration based on pigmentation, is also discussed. Beyond active RPE repair mechanisms, this protocol can be expanded to studies of RPE degeneration and injury responses as well as the effects of RPE damage on adjacent retinal and vascular tissues, among other cellular and molecular processes. This zebrafish system holds significant promise in identifying genes, networks, and processes that drive RPE regeneration and RPE disease-related mechanisms, with the long-term goal of applying this knowledge to mammalian systems and, ultimately, toward therapeutic development.


Assuntos
Epitélio Pigmentado da Retina , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Mamíferos , Metronidazol/farmacologia , Nitrorredutases/genética , Peixe-Zebra/genética
12.
Nat Methods ; 19(2): 205-215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132245

RESUMO

Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.


Assuntos
Metronidazol/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/química , Animais , Animais Geneticamente Modificados , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metronidazol/farmacocinética , Nitrorredutases/química , Nitrorredutases/genética , Pró-Fármacos/farmacologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Vibrio/enzimologia , Peixe-Zebra/genética
13.
Microbiol Spectr ; 10(2): e0013922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35195438

RESUMO

Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo , Oxirredutases/genética
14.
Cancer Gene Ther ; 29(7): 1021-1032, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34837065

RESUMO

Advances in the field of cancer immunotherapy have stimulated renewed interest in adenoviruses as oncolytic agents. Clinical experience has shown that oncolytic adenoviruses are safe and well tolerated but possess modest single-agent activity. One approach to improve the potency of oncolytic viruses is to utilise their tumour selectivity to deliver genes encoding prodrug-activating enzymes. These enzymes can convert prodrugs into cytotoxic species within the tumour; however, these cytotoxins can interfere with viral replication and limit utility. In this work, we evaluated the activity of a nitroreductase (NTR)-armed oncolytic adenovirus ONYX-411NTR in combination with the clinically tested bioreductive prodrug PR-104. Both NTR-expressing cells in vitro and xenografts containing a minor population of NTR-expressing cells were highly sensitive to PR-104. Pharmacologically relevant prodrug exposures did not interfere with ONYX-411NTR replication in vitro. In vivo, prodrug administration increased virus titre and improved virus distribution within tumour xenografts. Colonisation of tumours with high ONYX-411NTR titre resulted in NTR expression and prodrug activation. The combination of ONYX-411NTR with PR-104 was efficacious against HCT116 xenografts, whilst neither prodrug nor virus were active as single agents. This work highlights the potential for future clinical development of NTR-armed oncolytic viruses in combination with bioreductive prodrugs.


Assuntos
Aziridinas , Neoplasias , Terapia Viral Oncolítica , Pró-Fármacos , Adenoviridae , Aziridinas/farmacologia , Aziridinas/uso terapêutico , Humanos , Neoplasias/terapia , Compostos de Mostarda Nitrogenada , Nitrorredutases/genética , Nitrorredutases/metabolismo , Vírus Oncolíticos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
16.
Appl Environ Microbiol ; 87(24): e0175821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613761

RESUMO

Nitroreductases (NTRs) catalyze the reduction of a wide range of nitro-compounds and quinones using NAD(P)H. Although the physiological functions of these enzymes remain obscure, a tentative function of resistance to reactive oxygen species (ROS) via the detoxification of menadione has been proposed. This suggestion is based primarily on the transcriptional or translational induction of an NTR response to menadione rather than on convincing experimental evidence. We investigated the performance of a fungal NTR from Aspergillus nidulans (AnNTR) exposed to menadione to address the question of whether NTR is really an ROS defense enzyme. We confirmed that AnNTR was transcriptionally induced by external menadione. We observed that menadione treatment generated cytotoxic levels of O2•-, which requires well-known antioxidant enzymes such as superoxide dismutase, catalase, and peroxiredoxin to protect A. nidulans against menadione-derived ROS stress. However, AnNTR was counterproductive for ROS defense, since knocking out AnNTR decreased the intracellular O2•- levels, resulting in fungal viability higher than that of the wild type. This observation implies that AnNTR may accelerate the generation of O2•- from menadione. Our in vitro experiments indicated that AnNTR uses NADPH to reduce menadione in a single-electron reaction, and the subsequent semiquinone-quinone redox cycling resulted in O2•- generation. We demonstrated that A. nidulans nitroreductase should be an ROS generator, but not an ROS scavenger, in the presence of menadione. Our results clarified the relationship between nitroreductase and menadione-derived ROS stress, which has long been ambiguous. IMPORTANCE Menadione is commonly used as an O2•- generator in studies of oxidative stress responses. However, the precise mechanism through which menadione mediates cellular O2•- generation, as well as the way in which cells respond, remains unclear. Elucidating these events will have important implications for the use of menadione in biological and medical studies. Our results show that the production of Aspergillus nidulans nitroreductase (AnNTR) was induced by menadione. However, the accumulated AnNTR did not protect cells but instead increased the cytotoxic effect of menadione through a single-electron reduction reaction. Our finding that nitroreductase is involved in the menadione-mediated O2•- generation pathway has clarified the relationship between nitroreductase and menadione-derived ROS stress, which has long been ambiguous.


Assuntos
Aspergillus nidulans , Nitrorredutases , Estresse Oxidativo , Vitamina K 3 , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , NADP , Nitrorredutases/genética , Nitrorredutases/metabolismo , Espécies Reativas de Oxigênio
17.
ACS Sens ; 6(9): 3348-3356, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34469146

RESUMO

Nitroreductases (NTRs) mediate the reduction of nitroaromatic compounds to the corresponding nitrite, hydroxylamine, or amino derivatives. The activity of NTRs in bacteria facilitates the metabolic activation and antibacterial activity of 5-nitroimidazoles. Therefore, NTR activity correlates with the drug susceptibility and resistance of pathogenic bacteria. As such, it is important to develop a rapid and visual assay for the real-time sensing of bacterial NTRs for the evaluation and development of antibiotics. Herein, an activatable near-infrared fluorescent probe (HC-NO2) derived from a hemicyanine fluorophore was designed and developed based on two evaluation factors, including the calculated partition coefficient (Clog P) and fluorescence wavelength. Using HC-NO2 as the special substrate of NTRs, NTR activity can be assayed efficiently, and then, bacteria can be imaged based on the detection of NTRs. More importantly, a sensitive in-gel assay using HC-NO2 has been developed to selectively identify NTRs and sensitively determine NTR activity. Using the in-gel assay, NTRs from various bacterial species have been profiled visually from the "fluorescence fingerprints", which facilitates the rapid identification of NTRs from bacterial lysates. Thus, various homologous NTRs were identified from three metronidazole-susceptible bacterial species as well as seven unsusceptible species, which were confirmed by the whole-genome sequence. As such, the evaluation of NTRs from different bacterial species should help improve the rational usage of 5-nitroimidazole drugs as antibiotics.


Assuntos
Corantes Fluorescentes , Nitrorredutases , Bactérias , Nitrorredutases/genética
18.
J Genet Genomics ; 48(12): 1081-1090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411714

RESUMO

The Metronidazole (MTZ)/nitroreductase (NTR)-mediated cell ablation system is the most commonly used chemical-genetic cell ablation method in zebrafish. This system can specifically ablate target cells under spatial and temporal control. The MTZ/NTR system has become a widely used cell ablation system in biological, developmental, and functional studies. However, the inadequate cell-ablation ability of some cell types and the side effects of high concentration MTZ impede extensive applications of the MTZ/NTR system. In the present study, the US drug collection library was searched to extend the NTR system. Six MTZ analogs were found, and the cell-ablation ability of these analogs was tested in zebrafish larvae. The results revealed that two of the NTR substrates, Furazolidone and Ronidazole, ablated target cells more efficiently than MTZ at lower concentrations. Furthermore, the working concentration of Ronidazole, but not Furazolidone and MTZ, did not affect axonal bridge formation during spinal cord regeneration. Our results, taken together, indicate that Ronidazole is a superior prodrug to MTZ for the NTR system, especially for the study of neuron regeneration in zebrafish larvae.


Assuntos
Pró-Fármacos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Larva/metabolismo , Metronidazol/metabolismo , Metronidazol/farmacologia , Nitrorredutases/genética , Nitrorredutases/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Ronidazole , Peixe-Zebra/metabolismo
19.
Cancer Chemother Pharmacol ; 88(4): 673-687, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245333

RESUMO

PURPOSE: Hypoxia-activated prodrugs (HAPs) have the potential for eliminating chemo- and radiation-resistant hypoxic tumour cells, but their activity is often compromised by limited penetration into hypoxic zones. Nitrochloromethylbenzindoline (nitroCBI) HAPs are reduced in hypoxic cells to highly cytotoxic DNA minor groove alkylating aminoCBI metabolites. In this study, we investigate whether a lead nitroCBI, SN30548, generates a significant bystander effect through the diffusion of its aminoCBI metabolite and whether this compensates for any diffusion limitations of the prodrug in tumour tissue. METHODS: Metabolism and uptake of the nitroCBI in oxic and anoxic cells, and diffusion through multicellular layer cultures, was characterised by LC-MS/MS. To quantify bystander effects, clonogenic cell killing of HCT116 cells was assessed in multicellular spheroid co-cultures comprising cells transfected with cytochrome P450 oxidoreductase (POR) or E. coli nitroreductase NfsA. Spatially-resolved pharmacokinetic/pharmacodynamic (PK/PD) models, parameterised by the above measurements, were developed for spheroids and tumours using agent-based and Green's function modelling, respectively. RESULTS: NitroCBI was reduced to aminoCBI by POR under anoxia and by NfsA under oxia, and was the only significant cytotoxic metabolite in both cases. In spheroid co-cultures comprising 30% NfsA-expressing cells, non-metabolising cells were as sensitive as the NfsA cells, demonstrating a marked bystander effect. Agent-based PK/PD models provided good prediction of cytotoxicity in spheroids, while use of the same parameters in a Green's function model for a tumour microregion demonstrated that local diffusion of aminoCBI overcomes the penetration limitation of the prodrug. CONCLUSIONS: The nitroCBI HAP SN30548 generates a highly efficient bystander effect through local diffusion of its active metabolite in tumour tissue.


Assuntos
Efeito Espectador/efeitos dos fármacos , Hipóxia Celular , Indóis/farmacologia , Modelos Biológicos , Cromatografia Líquida , Técnicas de Cocultura , Proteínas de Escherichia coli/genética , Células HCT116 , Humanos , Indóis/farmacocinética , NADPH-Ferri-Hemoproteína Redutase/genética , Nitrorredutases/genética , Pró-Fármacos , Esferoides Celulares/citologia , Espectrometria de Massas em Tandem
20.
Biochem J ; 478(13): 2601-2617, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34142705

RESUMO

NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH- to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.


Assuntos
Antibacterianos/metabolismo , Benzoquinonas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Nitrofurantoína/metabolismo , Nitrorredutases/metabolismo , Antibacterianos/química , Benzoquinonas/química , Sítios de Ligação/genética , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mononucleotídeo de Flavina/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , NADP/metabolismo , Nitrofurantoína/química , Nitrorredutases/química , Nitrorredutases/genética , Oxirredução , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...